Probing extreme states of liquid matter
A complete understanding of planet formation and internal makeup cannot be achieved without studying how liquids behave in extreme conditions. Using laser-driven shock waves, researchers can reproduce these high pressure, high temperature states of matter in the laboratory for a few billionths of a second. The liquid structure of the compressed sample can then be studied using intense bursts of X-rays.
Previously, the accuracy of such measurements has been limited by several experimental factors, such as the reliability of the drive laser and the wavelength and monochromaticity of the probing X-rays. But now, with the installation of DiPOLE 100-X laser and one of the brightest X-ray sources in the world, the new High Energy Density instrument (HEDi) at the European XFEL (EuXFEL) provides a platform to study liquids at high pressure more accurately than ever.
To test the instrument, Gorman et al. used the EuXFEL beam to probe the structure of liquid Sn.
“The structure of shock-compressed liquid samples can be studied in unprecedented detail,” said author Martin Gorman. “This work used the DiPOLE 100-X laser to generate extreme states of matter and the brilliant EuXFEL beam to probe the structure and density of the liquid sample with uncertainties at the percent level, a vast improvement over previous work.”
The authors are positive that this new technology can help planetary modelers overcome key constraints in determining the inner makeup of planets and the liquid structure of elements on which no data has ever been collected.
“This paper represents a new generation of liquid X-ray diffraction experiments and will inspire future users to study more complicated materials relevant to planetary physics,” said Gorman.
Source: “Shock compression experiments using the DiPOLE 100-X laser on the high energy density instrument at the European X-ray free electron laser : Quantitative structural analysis of liquid Sn,” by M. G. Gorman, D. McGonegle, R. F. Smith, S. Singh, T. Jenkins, R. S. McWilliams, B. Albertazzi, S. J. Ali, L. Antonelli, M. R. Armstrong, C. Baehtz, O. B. Ball, S. Banerjee, A. B. Belonoshko, A. Benuzzi-Mounaix, C. A. Bolme, V. Bouffetier, R. Briggs, K. Buakor, T. Butcher, S. Di Dio Cafiso, V. Cerantola, J. Chantel, A. Di Cicco, S. Clarke, A. L. Coleman, J. Collier, G. W. Collins, A. J. Comley, F. Coppari, T. E. Cowan, G. Cristoforetti, H. Cynn, A. Descamps, F. Dorchies, M. J. Duff, A. Dwivedi, C. Edwards, J. H. Eggert, D. Errandonea, G. Fiquet, E. Galtier, A. Laso Garcia, H. Ginestet, L. Gizzi, A. Gleason, S. Goede, J. M. Gonzalez, M. Harmand, N. J. Hartley, P. G. Heighway, C. Hernandez-Gomez, A. Higginbotham, H. Höppner, R. J. Husband, T. M. Hutchinson, H. Hwang, A. E. Jenei, D. A. Keen, J. Kim, P. Koester, Z. Konopkova, D. Kraus, A. Krygier, L. Labate, Y. Lee, H.-P. Liermann, P. Mason, M. Masruri, B. Massani, E. E. McBride, C. McGuire, J. D. McHardy, S. Merkel, G. Morard, B. Nagler, M. Nakatsutsumi, K. Nguyen-Cong, A.-M. Norton, I. I. Oleynik, C. Otzen, N. Ozaki, S. Pandolfi, D. J. Peake, A. Pelka, K. A. Pereira, J. P. Phillips, C. Prescher, T. R. Preston, L. Randolph, D. Ranjan, A. Ravasio, R. Redmer, J. Rips, D. Santamaria-Perez, D. J. Savage, M. Schoelmerich, J.-P. Schwinkendorf, J. Smith, A. Sollier, J. Spear, C. Spindloe, M. Stevenson, C. Strohm, T.-A. Suer, M. Tang, M. Toncian, T. Toncian, S. J. Tracy, A. Trapananti, T. Tschentscher, M. Tyldesley, C. E. Vennari, T. Vinci, S. C. Vogel, T. J. Volz, J. Vorberger, J. P. S. Walsh, J. S. Wark, J. T. Willman, L. Wollenweber, U. Zastrau, E. Brambrink, K. Appel, and M. I. McMahon, Journal of Applied Physics (2024). The article can be accessed at https://doi.org/10.1063/5.0201702 .