News & Analysis
/
Article

Machine-learning model reveals critical features needed for high-throughput screening of candidates for carbon-dioxide adsorption

AUG 23, 2024
Hundreds of features used in candidate metal-organic frameworks ranked and assessed.
Machine-learning model reveals critical features needed for high-throughput screening of candidates for carbon-dioxide adsorption internal name

Machine-learning model reveals critical features needed for high-throughput screening of candidates for carbon-dioxide adsorption lead image

Metal-organic frameworks (MOFs) are porous crystalline materials whose high porosity and surface area have been increasingly used for carbon dioxide (CO2) adsorption. Because of their importance, the ability to quickly screen different MOFs for their potential efficiency is highly desirable. Teng and Shan developed a machine learning model that determined the key properties that should be used in screening MOFs.

Analyzing the effects of 23 structural and molecular features and 765 calculated features for their model, the duo ranked the importance of different features at different pressures. They found that, regardless of the pressure, molecular structure and pore size of MOFs were critical to improving the accuracy of their prediction model, up to 20 percent.

“High-throughput screening using our machine-learning model could reduce the demand for computational resources and minimize the need for extensive expert intervention,” author Guangcun Shan said. “Furthermore, the machine-learning model in this study could be used to provide theoretical support for other predicted results, so they can achieve higher prediction accuracy.”

To understand the effect of individual features on CO2adsorption, the authors sequentially added structural, molecular, and calculated features to their model. Then, to understand why some features were ranked more highly than others, the team applied their domain knowledge on intermolecular forces, secondary bonds, and electric potential.

The team plans to continue exploring how MOFs adsorb CO2at the atomic level using similar machine learning methods.

“By utilizing other advanced deep learning models, such as graph neural networks, we aim to further assist in screening MOFs with high adsorption capacities,” Shan said.

Source: “Interpretable machine learning for materials discovery: Predicting CO2 adsorption properties of metal-organic frameworks,” by Yukun Teng and Guangcun Shan, APL Materials (2024). The article can be accessed at https://doi.org/10.1063/5.0222154 .

This paper is part of the Emerging Leaders in Materials Science Collection, learn more here .

More Science
/
Article
A USC team refines a previously developed OCT otoscope and tests its efficacy in a trial at a hearing clinic.
/
Article
Made using an environementally sustainable process of modifying serum bovine albumin, new material provides path forward as contrast agent for multiple imaging modalities.
/
Article
Orbital electron tuning and crystal engineering improves the energy storage capacity of non-flammable batteries.
/
Article
If electric rotorcraft are to be our commuter vehicles of the future, they must overcome acoustic limitations.